skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Herrick, Jack"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Barnacles are ancient arthropods that, as adults, are surrounded by a hard, mineralized, outer shell that the organism produces for protection. While extensive research has been conducted on the glue-like cement that barnacles use to adhere to surfaces, less is known about the barnacle exoskeleton, especially the process by which the barnacle exoskeleton is formed. Here, we present data exploring the changes that occur as the barnacle cyprid undergoes metamorphosis to become a sessile juvenile with a mineralized exoskeleton. Scanning electron microscope data show dramatic morphological changes in the barnacle exoskeleton following metamorphosis. Energy-dispersive X-ray spectroscopy indicates a small amount of calcium (8%) 1 h post-metamorphosis that steadily increases to 28% by 2 days following metamorphosis. Raman spectroscopy indicates calcite in the exoskeleton of a barnacle 2 days following metamorphosis and no detectable calcium carbonate in exoskeletons up to 3 h post-metamorphosis. Confocal microscopy indicates during this 2 day period, barnacle base plate area and height increases rapidly (0.001 mm 2 h −1 and 0.30 µm h −1 , respectively). These results provide critical information into the early life stages of the barnacle, which will be important for developing an understanding of how ocean acidification might impact the calcification process of the barnacle exoskeleton. 
    more » « less